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When sheared suspensions are simulated, Lees-Edwards boundary conditions allow more realistic compu-
tational setups as they remove the need of a domain bounded by shearing walls (as in Couette-type flow) which
bias typical flow structures. Lees-Edwards boundary conditions therefore allow investigation of pure bulk
properties in a quasi-infinite system. In addition, they improve the computational efficiency of the simulations
as the whole domain can be used to calculate averages. We propose an implementation of Lees-Edwards
boundary conditions for lattice Boltzmann simulations of particulate suspensions, combined with an accurate
treatment of fluid-particle interactions. The algorithm is validated using a simple single-particle benchmark and
further applied to a fully resolved suspension flow. Shear-thickening behavior, which is prolonged to higher
shear rates as compared to Couette flow results, could be observed.
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I. INTRODUCTION

The dynamics of dense liquid-particle suspensions is of
great importance for many physical, biological, and indus-
trial processes. Suspension behavior is rich in rheological
aspects triggered by various properties such as particle-fluid
volume density, particle shape, size distribution, and proper-
ties of the suspending fluid [1]. The apparent viscosity vy, a
crucial property describing a (complex) fluid at the macro-
scopic scale in general, depends on the shear rate y. Differ-
ent types of viscosity behavior can be observed in a unitless
parameter space described by the Reynolds number Re,
=4yR?/ vy, expressing the ratio of inertial forces and viscous
forces, and Péclet number Pep=4)'/R2/ D, the ratio of advec-
tion to diffusion (where ¥R denotes a typical velocity, R the
particle radius, vy the kinematic viscosity of the fluid, and D
the diffusion coefficient). In general, from low to high Re,
and Pe, a hard-sphere suspension shows the following be-
havior [2]: for small Re,, and Pe,, thermal fluctuations govern
the system dynamics and lead to an increased viscosity due
to the increased effective volume of the particles. Increase in
the shear rate y to mediate Re, and Pe,, causes the viscosity
to exhibit first shear thinning due to the decreasing influence
of Brownian motion, followed by a Newtonian plateau where
the particles of the suspensions are believed to be aligned in
sheets parallel to the flow that are more easily sheared. Fur-
ther increase in 7y causes the suspension to thicken. Some
experiments on real suspensions give rise to the assumption
that this again is followed by a shear-thinning region [1].

Simulation approaches to address suspension rheology
range from, in decreasing order of abstraction, (i) modeling
the suspension as non-Newtonian fluid, (ii) continuum mod-
els of two-phase flows, and (iii) fully resolved particulate
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suspensions where the fluid dynamics is governed by the
Navier-Stokes equations and the motion of the solid particles
is governed by Newton’s laws. In many practical problems,
the more detailed level of description turns out to be neces-
sary and Brownian motion has to be incorporated [3] for
small particle sizes at small Reynolds numbers.

Lees-Edwards boundary conditions (LEBCs) [4] are rou-
tinely used in molecular dynamics (MD) simulations to
maintain a constant shear over a periodically continued
simulation box. They allow one to realize a sheared system
without the need of explicit shearing solid walls.

Periodic boundary conditions are applied in the directions
perpendicular to a shear velocity gradient while in the direc-
tion of the velocity gradient it is assumed that a copy of the
system is moving with a velocity u; g=(u; 5,0) with respect
to the original system and a velocity w; g=(—u;g,0) on the
opposite side. This induces a shear rate y=u; /L, over the
system height L,.

The need to develop LEBCs for suspension simulations
arises from the fact that the application of the common pla-
nar Couette viscometer scheme, where two moving parallel
planar walls shear the fluid in between, gives results that are
unavoidably affected by the presence of the walls. If we are
interested in pure bulk properties we can use only a limited
system fraction for measurements. Wall effects are the for-
mation of a depletion zone near the wall and the resultant
wall slip, both clearly observable in real suspensions [5,6] as
well as in numerical simulations [7,8]. Suspended particles
are limited in their mobility near the wall, leading to differ-
ent particle structure and lower solid-fluid density near the
wall resulting in a lower apparent viscosity in that region.
Also, the wall slip decreases the shear rate over the bulk
leading to a different situation than intended.

The use of the viscometer theme in lattice Boltzmann
method (LBM) simulations has even greater impact. Here the
fluid velocity is limited to low Mach numbers and viscosity
has a lower bound to ensure stability of the relaxation
scheme. This limits the system size at higher Re,. Addition-
ally, the system size itself is limited in lattice and particle
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size units to keep the problem computationally feasible.
Therefore, with numerical simulations we cannot escape
boundary effects. However, appropriate boundary conditions
as proposed in this paper can minimize such effects.

In computational fluid dynamics formulations of LEBCs
exist using other methods for particulate suspensions, for ex-
ample a finite-element method together with a rigid-ring de-
scription of the particle [9]. For lattice Boltzmann methods
LEBCs for suspensions in three dimensions (3D) [10] were
reported but unfortunately no further details of the imple-
mentation were provided, nor answers to questions that arise
when combining LEBCs with lattice-based models. In a re-
cently published work [11], LEBCs were used to simulate
deformable particles described by a finite-element method
and coupled to LBM flow. In the present work we propose a
method for a consistent coupling of Lees-Edwards boundary
conditions with standard LBM suspension approaches (such
as those by Ladd [12,13] or Aidun, Lu, and Ding [14-16)).
In particular, we employ a corrected momentum exchange
method (CMES), where S refers to suspensions the correc-
tion was originally developed for, together with a nonequi-
librium refill method, both described in [17].

The lattice Boltzmann method is briefly introduced in
Sec. II. In Sec. III, we discuss the implementation of LEBCs,
while Sec. IV is dedicated to numerical tests. First, we vali-
date the algorithms by a simulation of a single disk crossing
a LE boundary. Then, we present simulations of a dense
suspension and observe flow and particle density profiles as
well as v, as a function of Re,. Section V draws the con-
clusions.

app

II. LATTICE BOLTZMANN METHOD

The lattice Boltzmann method [18,19] an alternative ap-
proach to hydrodynamics offering a very efficient way to
solve the discretized Boltzmann equation on regular lattices.
The correct Navier-Stokes behavior can be approximated by
proper choice of the equilibrium function.

We employ a two-relaxation-time (TRT) relaxation
scheme [20], which offers a good balance between quality of
results, computational cost, and implementation effort. It
achieves a slight improvement in comparison to the lattice
Bhatnagar-Gross-Krook (LBGK) scheme, the lattice imple-
mentation of the single-relaxation-time collision operator by
Bhatnagar, Gross, and Krook [21] in terms of damping un-
physical high-frequency modes, leading to more stable simu-
lations at higher Pe,,.

At each time iteration ¢ and at every node r of the lattice,
we denote with f;=f,(r,z) the particle densities traveling in
directions of e;, where {i=1,...,b} denotes the discrete ve-
locity space. During the collision step, these distributions are
relaxed toward an equilibrium distribution f{% Unlike the
LBGK method the TRT model uses two different relaxation
times, and a collision operator can be defined as

1 1
C(f) = ;_[ﬁqq) —-fil"+ T_[ffq(f) -fil" (1)

where F7 and F; denote the even and the odd part, respec-
tively, of a function on the discrete velocity space:
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where i* is such that e;;=—e;. Then, defining a propagation
operator P the propagation step reads

Pfir,0) =f(r+e,t+1). (2)
The relaxation parameter 7 is connected to the kinematic
viscosity by v=c(7—1/2)(Ax*/Ar) [20,21] where c, is the
speed of sound. The equilibrium function is a function of the

local velocity distribution through the density p(f) and the
velocity u(f), computed according to

plr.n) =2 fi(r.0), 3)

p(r.0u(r.n =2 efi(r.1). )

For ease of notation, in what follows, we will identify
F7(6)=£%p(f) ,u(f)). Besides density and velocity, the mo-
mentum tensor can be computed as

Map(r.t) = 2 ejoeigf(r.1). (5)

Conservation of mass, momentum, and kinetic energy are
constraints to any equilibrium function f{%r,7) (and the
Navier-Stokes equations for weakly compressible fluids are
obtained [22]). Isotropy requires a multispeed model which
involves at least nine lattice velocities e; in 2D [22]. A suit-
able choice for f7 for this model is

1 1 1
ool Sous e ) o
s s 2

with the lattice velocities

elz(lso)s e2:(091)9 e3=(_ 1’0), e4=(03_ 1)’

es=(1,1), es=(-1,1), e;=(-1,-1), eg=(1,-1),

and e,=(0,0) for the rest particle distribution. The speed of
sound is defined as c,=1/+3 and the direction-dependent
weights w; read

i=0

i=1-4
1718

i=5-8

1/36
so that (6) agrees with an expansion of the Maxwell-
Boltzmann distribution in small Mach numbers u/c, to the

order of u?.
The LBM scheme can be written as

Pfi(r.1) = Cfilr.1) ()

using propagation and collision operators defined in (2) and
(1).

It can be shown that in the asymptotic limit, the stress
tensor

Sup(r.1) = [T 5(r,1) — C(r, 1) J(Ax/Ar)> (8)

and pressure p=(p—po)c2(Ax/Ar)?> can be obtained locally.
Here, p, denotes a constant reference density which is typi-
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cally set to 1 in simulations. In practice, I1,z has to be cal-
culated as the mean over precollision and postcollision den-
sities f; and Cf;. C(r,f)=p(r,H)u(r,r)u(r,s) is the local
convection tensor.

Throughout the remainder of this paper all quantities will
be given in lattice units, setting Ax=Ar=1.

A. Direct simulation of suspended particles

To implement no-slip solid-fluid boundary conditions in
the present work we used the bounceback at the links (BBL)
method, assuming the boundary to be always located at the
midpoint of boundary links (BL), i.e., of the lattice links that
are cut by the solid-fluid interface. More sophisticated and
accurate methods [23-25] exist and, in principle, can be
combined with the ideas of the following sections. However,
for clearness we stick here to the BBL description. In the
case of BBL with moving solid surface, the propagation step
is given by

Ry fi(r,t,) if i" is BL,

Pfi(r,1,) = 9)
fint, fir+ey,t,) else,
using a reflection operator
Ru;;fi:fi+zwic;2ub'ei (10)

where u, is the velocity of the midpoint of the boundary link
and i’ denotes the opposite direction to i. If the fluid node is
not virtual, an amount of momentum

8p;=2e,[Cfy(r,t+ 1) — pwi(c;u, - e+ Te)] (1)

is transferred to the particle. T; is a correction term. The
transferred momentum 6p; gives rise to a force and a torque
acting at the boundary point r,,:r+%e,~/ according to

F(rb,t + 1/2) = 5pl/At (12)

T(r,,t+1/2) = (r, — R) X F(r,,t + 1/2), (13)

where R is the center of mass of the particle.

The original momentum exchange algorithm (MEA) pro-
posed by Ladd [12,13] is obtained by setting T;=0. How-
ever, the MEA produces strong shear- and velocity-
dependent particle behavior in situations where the particle
exceeds the original domain and is partly described in an-
other reference frame (see also Fig. 2). As shown in [17,26]
the correction term

Tey=—c;'(uy, - €)*+c; u; (14)

efficiently removes the leading order of non-Galilean effects.
This correction term is the essential improvement proposed
with the corrected momentum exchange for suspensions
[17]. The violation of Galilean invariance by the MEA, when
used locally, has been already observed in [27] and cured by
the introduction of additional virtual fluid nodes inside the
solid domain. However, this is a workaround and care has to
be taken at the implementation of such an idea when bound-
ary links cross a Lees-Edwards boundary. The correction
(14) offers a consistent analytical solution and, in most cases,
allows an easier implementation.
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Another consequence of the lattice representation is that
nodes are covered or uncovered while particles are moving.
In the method by Aidun et al. (ALD) [14-16] the fluid mo-
mentum of such a node is given to or taken from the particle,
respectively. Such an extra momentum exchange is not nec-
essary in the suspension method by Ladd [12,13] where the
inner fluid is physical and contributes to the particle dynam-
ics. However, in both methods the inner fluid, whether vir-
tual or physical, is used to spare the reinitialization of fluid
nodes. It is assumed that the properties of an inner fluid
already satisfies the outside boundary situation when it is
uncovered. However, we could show [17] that this approach
may lead to unphysical behavior when particles are follow-
ing each other in the flow. An improved refill method was
proposed in [28]. In [17] we successfully employed an effi-
cient refill method based on the decomposed interpolation of
equilibrium and nonequilibrium parts of the f;’s [29], which
significantly improves the situation of two particles follow-
ing each other, and removes the need to simulate inner fluid.

In situations where particles are near contact it happens
that in the lattice representation no fluid node exists between
the particles causing the lubrication to break down. In order
to resolve this, either the grid needs to be refined appropri-
ately or a model of lubrication forces based on theoretical
lubrication approximation has to be used for correction. We
applied a single-term two-particle lubrication force derived
from linear lubrication theory for the force between two cyl-
inders [8].

Using the net force and torque on the particle resulting
from contributions of the momentum transfer during fluid
reflection at boundary links and the lubrication forces the
motion of the solid particle is determined by its Newtonian
equations of motion and can be solved using a velocity-verlet
scheme or, as in our case, a fourth-order Runge-Kutta inte-
gration to resolve the dynamics as correctly as possible with
a given time step also in cases when particles are very close
and therefore force gradients are very steep.

III. LEES-EDWARDS BOUNDARY CONDITIONS

It what follows we present a method for suspension simu-
lations that allows the consistent treatment of solid particles
crossing the boundary between systems which move respect
to each other. It is an extension of the method by Wagner and
Pagonabarraga for fluid-only lattice Boltzmann systems [30],
where fluid densities that cross a LE boundary have to un-
dergo two steps in addition to normal periodic propagation.
The first problem is the implementation of a velocity shift in
a method with a fixed set of velocities of densities instead of
particles with real coordinates. A Galilean transform has to
be applied to the distributions, fi,uo — fi,“oi“LE where u, de-
notes the reference velocity of the computational domain,
and u; z=(u; 5,0) denotes the velocity shift between the sys-
tem copies. Following [30] a transform rule can be derived
from an approximation of (1),

Fi=f+ 1059+ ce; V 19 + O(P). (15)

All terms of order O(d) can be skipped, because their zeroth
and first moments are of negligible order O(&). The u de-
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pendence is kept and one arrives at a rather simple expres-
sion for the change in the boundary-crossing density due to
the transform, which reads

~ fil(p,u+uyp) - fi4(p,u), (16)

where p=p(f(r,7)) and u=u(f(r,7)). From that we define a
Galilean transform operator

Gu fi=Fi+ {4 (pu+ug) - f7%p,u) (17)

that has to be applied to all densities that cross a LEBC. The
local density is conserved under this transform.

Another issue in defining a consistent LEBC for lattice
Boltzmann systems is that the shift between the system cop-
ies sy g does not necessarily correspond to an integer multiple
of the lattice spacing. In practice, densities crossing a LE
boundary have to be mapped to the destination lattice by an
interpolation. More precisely, they have to be distributed
over the two cells that partly overlap the virtual destination
cell. For the simple case of only fluid nodes, for the propa-
gation of densities that are fed from nodes in a shifted refer-
ence frame, we can write

Prefilr) = slguLEfi(rl -

fi,uo+uLE - fi,u0

€)+ SzguLEfi(rz -e) (1)
with
sp=mod(s.g, 1),
= 1 _mOd(SLE’l)» (19)
= (.x + int(sLE) + l,y),

r, = (x +int(s g),y). (20)

Including solid-fluid interaction given by (9) for the propa-
gation of densities that may cross a LE boundary we can
write

Ry, fir(r) if L, is BL,
Prefi(r) =s,
guLEf,-(l‘] —e;) else,
Ry, fir(r) if L, is BL,
+5 J ? 1)

? Gu filra—e) else.

This approach is motivated by subgrid-scale boundary con-
ditions proposed by Verberg and Ladd [23]. There also, par-
tially covered destination nodes caused a splitting of propa-
gated densities.

To illustrate the application of the propagation operator
P Fig. 1 depicts the fate of f5 densities that propagation
vectors point outside the original domain. Density f5(r ;) is
split into two parts s,f5(r(;)) and s,f5(r(;)) which are propa-
gated to the two nodes of the shifted copy that partly overlap
the ghost node it would go to by the application of P. On
both parts the action of G, . will be applied. In the case of
f5(r@)) one part, s,fs5(r(;)), is reflected by the action of R, :

because the corresponding destination node belongs to the
particle. In this case, w, is transformed to u,=u,+ (i g,0)
because the particle is described by its center residing in the
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FIG. 1. (Color online) Illustration of the cases to be distin-
guished during the propagation of f5 densities in a model case.
Shown are some of the nodes of the upper boundary layer and a part
of the lower layer at a Lees-Edwards boundary. Yellow (light gray)
nodes belong to a particle crossing the boundary; blue (mid-gray)
are fluid nodes. G denotes the application of the Galilean transform
(17), R the application of the reflection operator (10).

reference frame moving with u; g with respect to the original
frame. In the case of f5(r(3)) both parts are reflected by Rué.

For the case when the suspension model includes the de-
scription of the inner fluid, the density fs5(r()) undergoes a
similar procedure as f5(r ;).

IV. NUMERICAL RESULTS
A. One particle crossing LE boundary

As an essential validation of the implementation of LE
boundary conditions we let a single particle cross the LE
boundary. No external forces are applied to the particle. Us-
ing LEBCs where no solid objects are needed to drive the
flow and therefore no preferred reference exists, we are able
to superimpose the sheared flow with any constant velocity
as long as actual lattice velocities are kept in a range where
the LBM is valid.

In detail, we placed a particle at the midpoint of a squared
domain, with an initial velocity equal to the fluid velocity at
that point v,(1=0)=u,(r=0)=(0.025,0.005) which represents
the velocity that is superimposed to a normal shear flow with
the particle at its v;,=0 line. The flow is initialized and
maintained at a horizontal shear y=u,,/L,=1.25X 10~ and
the particle’s angular speed is set accordmgly as (t=0)
=1vy/2. After a short equilibration time, the near-particle flow
field is equilibrated and the particle moves freely along with
the fluid and crosses the LE boundary. In Fig. 2 the y com-
ponent of the particle speed is plotted as obtained by differ-
ent suspension methods. Ideally, conserving Galilean invari-
ance, the velocity should stay constant. However, deviations
can be observed from the beginning for the ALD method.
Ladd’s method conserves the speed perfectly until the par-
ticles crosses the LE boundary. It turned out that this results
from non-Galilean effects of the momentum exchange algo-
rithm used in both cases [17]. In Ladd’s case, as long as the
particle resides completely in one reference frame, those ef-
fects are eliminated by the use of the inner fluid where the
momentum exchange process between the outer fluid and the
solid has its antiparallel counterpart in the inner fluid. This
exactly eliminates any dependence on the superimposed ve-
locity. To exploit this effect also for the ALD method in [11]
physical nodes were added at the inner surface. However, in
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FIG. 2. y component of the particle’s velocity v, , while the
particle is freely moving at a v, =0 position of a shear flow with
rate y=1.25 X 1073, The whole system is superposed with a velocity
v,=(0.025,0.005), therefore expecting a constant v, ,=0.005. A
systematic violation of Galilean invariance can be observed for the
ALD method over the whole simulation time. During the period ¢
~12000-15000, when the particle crosses the LE boundary,
strong deviations can be observed for both methods not applying
the correction to the MEA. The maximum Mach number did not

exceed Ma=0.0487 in the course of the experiments.

the case the particle is partly described in one reference
frame and the other part in another reference frame with a
different underlying velocity, this correcting effect is absent.
Using the corrected momentum exchange algorithm we were
able to repeat the experiment obtaining satisfactory results
(Fig. 2). Using CMES non-Galilean effects are minimized
and the particle crosses the LE boundary practically unaf-
fected. The remaining deviations can be related to discreti-
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zation errors on the near-particle flow field, and do not affect
the leading orders, relevant for the hydrodynamics. We could
confirm this by simulations with successively increased grid
resolution.

In conclusion, the results in Fig. 2 show that the proposed
LEBC algorithm allows consistent simulations of suspen-
sions, sheared according to the Lees-Edwards idea.

B. Suspension in sheared flow

Next, we simulate sheared suspensions with a solid-fluid
fraction ¢=0.40 using the LEBC method and the Couette
scheme for comparison of the flow fields. In a squared sys-
tem of size L, X L,=259 X259 lattice nodes, we suspended
133 particles with a radius R,=8.0. The suspension was
sheared at particle shear Reynolds numbers Re,
=0.005,0.2,1.0 and profiles of velocity and the solid-fluid
ratio were measured. Averages were obtained over a shear of
SLE= 10Lx

Employing the Couette condition a clear deviation from
the Newtonian velocity profile can be seen for Re,=0.1, as
shown in Fig. 3. Close to the walls an increasing slip be-
comes clearly detectable which lowers the velocity gradient
over the bulk. This behavior could already be seen in simu-
lations of hard-sphere suspensions [31] as well as experimen-
tal setups [6].

Figure 3 shows the plot of ¢(y), demonstrating that the
profile deviates from the linear Newtonian profile in two
aspects.

(i) Especially close to the walls, particle densities oscillate
with a period of slightly more than one particle width. This
suggests that particles tend to align to the walls forming
sheets [32]. Such structures of particles parallel to the shear
velocity decrease the average interparticle friction.

P

L ! L

(a)

(b) o(y)/<¢> (c)

0 I ! —
07 08 09 1 11 12 -03-02-01 0 0.1 0.2 0.3
“x(Y)/uw'ux,Newlon(Y)

FIG. 3. (a) Snapshot of a sheared suspension of 133 disks of radius R=8.0 in a domain of 259 X 259 lattice sites. The particle-shear
Reynolds number Re,~ 1.5. The grayscale code indicates low- (dark) and high-pressure (bright) areas. Note the typical particle and pressure
field structures that would be inhibited by walls in a Couette scheme. (b), (c) Comparison of profiles as obtained by application of the
Couette scheme (dotted line) and Lees-Edwards boundary conditions (solid line). (b) The local average particle density ¢(y) shows strong
wall effects in the Couette case. Using LEBCs particles are homogeneously distributed over the system height. Both profiles were measured
at Re,=1.0. (c) The velocity profiles v,(y) as obtained using Couette boundary conditions show increasing slip effects near the wall for
Re,=0.1, 1.0. Using LEBCs at Re,=1.0 no systematic deviations from the Newtonian profile can be seen.
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(ii) The average particle density near the wall is less than
in the bulk. The presence of the wall alone causes a lift force
on the particles [33] and causes a depletion zone, according
to observations in experimental setups [5]. Another effect of
sheetlike structures of particles is that the mobility of par-
ticles is inhibited. Particles of sheets sliding along each other
mostly collide with small collision cross sections, pushing
the particles back into the sheet.

Both effects lower the viscosity and therefore lead to the
observed wall slip.

Repeating the same experiments using LEBCs we obtain
improved behavior. Here fluid and particles experience ho-
mogeneity. Particles are free to form configurations typical
for a certain shear rate all over the domain. In fact, the plots
of the profiles on the left of Fig. 3 show a flat distribution of
particles over the system height and no systematic deviations
from the Newtonian velocity profile.

C. Shear-thickening suspension

A highly relevant aspect of hard-sphere suspension rheol-
ogy is shear thickening at higher particle shear Reynolds
numbers Re,. Already in the Stokes regime the existence of
solid particles causes a higher apparent viscosity. The in-
crease of the relative apparent viscosity with higher solid-
fluid fractions ¢ is best described by the semiempirical
Krieger-Dougherty relation [34]

_[ ]¢max
3:(1— ¢ ) ! (22)

Vg ¢max

where ¢,,,,=0.82 is the solid-fluid fraction in 2D at which
particles are packed densely enough that any particle flow is
impeded and therefore the viscosity diverges. [7] is an in-
trinsic viscosity of the suspension and equals 2 in 2D. It has
been shown that the ALD and Ladd [12,13] methods can
reproduce the Krieger-Dougherty relation in a convincing ac-
curacy over the range of implementable fluid-solid ratios in
the range of small Re [7,8]. In Fig. 4 we present measure-
ments of the increase of v,,, over a wide range of solid-fluid
ratios ¢ as obtained by CMES. The same system settings as
for the simulations in the previous sections were used. The
results agree well with the expected Krieger-Dougherty be-
havior.

For shear-thickening measurements we used a system
with size 259 X 259 and 133 suspended disks with a radius of
R=8, resulting in a solid-fluid ratio of ¢=0.40. The density
ratio was set to p,/ p;=10. We used the latter value to be able
to give direct comparisons with the shear-thickening simula-
tions presented in [8]. To obtain the apparent viscosity we
followed the method presented in [7,31], which allows shear
stresses to be measured in the bulk instead of measuring
frictional forces at the walls. Shear stresses can be calculated
along a horizontal plane as the sum over the contributions
from the fluid and solid phase as outlined in [31]. We ob-
tained stresses by averaging measurements over ten equally
distributed planes and a shear of at least 10L,. In the case of
Couette boundary conditions we took care that only bulk
properties were measured by distributing the stress planes in
such a manner that none of them was closer than 50 lattice
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FIG. 4. Increase of the relative apparent viscosity v,p, as a func-
tion of the solid-fluid ratio ¢ for Re<<1 as obtained by a simulation
using CMES compared to the theoretical behavior proposed by the
Krieger-Dougherty and Einstein approximations for small ¢. A
comparison between Couette and LEBC results shows no signifi-
cant difference in this regime.

sites to the wall. Looking at the profiles in Fig. 3 we can
safely assume that direct influences of the walls are absent at
this distance. Use of LEBC measurements can be carried out
over the whole system height. This increases the bulk area
we are interested in significantly.

In Fig. 5 apparent viscosities are shown, normalized by
the Krieger-Dougherty relation obtained for a range of Re,
from 0.001 to 4.0. The maximum achievable Reynolds num-
ber is limited by stability conditions of the LBM scheme,
giving a lower bound for the fluid viscosity and limiting the
maximum particle lattice speed. For the highest Re,=4 we
used a fluid viscosity v,=0.02 and set the Lees-Edwards shift
velocity to u; g=0.0405.

For comparison, in Fig. 5 we also plotted shear-thickening
measurements obtained by Kromkamp et al. with the ALD
method, Couette conditions, and comparable system settings
[8]. Our results for the Couette case agree very well with

" 0=0.40 (Kromkamp+)  x
0=0.40 (Lees-Edwards) 8-
0=0.40 Couette +--x---

FIG. 5. Apparent viscosity v,,, as a function of the particle
shear Reynolds number Re, obtained using the Couette flow
scheme and Lees-Edwards boundary conditions. For a comparison
also shear-thickening results obtained by applying the ALD method
with the Couette flow scheme [8] are shown. Using LEBCs the
increase of v, continues over the range of reachable Re,,
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their data. At about Re,=0.01 the apparent viscosity begins
to increase and levels off at about Rep=0.2. Also, at the
highest Re, at which we could carry out stable simulation
Vypp Stayed roughly constant. We repeated the experiments
using the Lees-Edwards boundary conditions proposed in
this work and obtained a behavior that significantly differs
from the Couette results for Re,>0.1. Instead of a saturation
behavior v,,, shows a continued increase. The profiles in Fig.
3 offer a straightforward explanation for this. Using the Cou-
ette conditions we see a slip near the wall for Re,>0.1
which lowers the velocity gradient and the effective shear
rate over the bulk.

A direct relation between the actual bulk shear rate and
Vypp independent of Re, could not be found to be clearly
visible over the plateau range. This may be caused by the
different characters of momentum exchange events for dif-
ferent slip velocities. At higher slip velocities, particles may
collide with much higher momentum exchange and impact
on the particle structure in the bulk but, on the other hand,
such events are less frequent in that regime.

When LEBCs are used these wall effects are not present
and the suspension can be sheared at the actually intended
shear rate, enabling unbiased studies of sheared hard-sphere
suspensions. The apparent viscosity obtained with LEBCs
shows a continued increase of v, giving rise to the assump-
tion that shear-thickening either levels off at higher Re, or
that there is a crossover to jamming behavior. There the
shear rate is so high that the suspending role of the fluid
becomes negligible and particles collide and jam as in a
granular medium.

Using this implementation of LEBCs, we could also start
extended studies on cluster formation, investigating the
growth of typical structures in sheared suspensions. Results
will be presented in a forthcoming work. Concerning the
present work, we only took care that particle cluster size did
not exceed the system size to prevent percolation of particle
clusters which would lead to a jammed suspension in a Lees-
Edwards system.

For an estimation of the increase in computational effort
due to the proposed implementation of LEBCs against a
standard Couette flow simulation for systems as used in Sec.
IV C we measured the ratio between the run times of both to
be 1.06. The additional effort of 6% is still much less than
the approximately 30% of the system height at the highest
shear rate that cannot be used for measurements due to the
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bias by the wall. Increase in the distance between the walls to
correct for this, as well as increase in the wall speed to main-
tain the same shear rate in a Couette flow simulation, would
lead to a Mach number that is approximately 30% higher and
would therefore lead to a potentially higher error of the LB
method and to the onset of instabilities. Furthermore, LEBCs
do allow for simulations of systems where the typical corre-
lation length (e.g., particle cluster size) would exceed the
unbiased bulk width in a Couette flow simulation.

As a final remark, although only of technical importance,
we observe that, using LEBCs, the global momentum is not
exactly conserved due to numerical inaccuracies of lattice
Boltzmann schemes and the absence of solid obstacles which
would define a preferred reference frame. We could improve
the conservation by a correction of fluid and particle veloci-
ties equivalent to a Galilean transform of the whole system,
without affecting the physics.

V. SUMMARY

We developed Lees-Edwards boundary conditions for lat-
tice Boltzmann suspension flows, combining the method pro-
posed for fluid-only systems in [30] with an accurate treat-
ment of the solid particles. The approach has been validated
in a benchmark (a single particle crossing a LE boundary)
showing that it yields consistent particle dynamics. Then,
comparing simulations of suspensions, we could demonstrate
that known drawbacks of the Couette scheme (e.g., results
biased by the existence of walls) can be removed by apply-
ing a LEBC approach. Finally, in a typical application, we
used LEBCs to investigate the shear thickening of hard-
sphere suspensions. Instead of a saturation of v,,,(Re,)
(which can again be related to finite-size effects), we ob-
tained a prolonged thickening behavior.

From the presented test cases, we conclude that the pro-
posed algorithm realizes consistent Lees-Edwards boundary
conditions for lattice Boltzmann systems, offering a useful
approach to further studies of the pure bulk suspension prop-
erties in a quasi-infinite sheared flow.
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